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Abstract

Expressions for the energy influence coefficients of a built-up structure are found in terms of the modes of
the whole structure. These coefficients relate the time and frequency average energies of the subsystems to
the subsystem input powers. Rain-on-the-roof excitation over a frequency band O is assumed. It is then
seen that the system can be described by an SEA model only if a particular condition involving the mode
shapes of the system is satisfied. Broadly, the condition holds if the mode shapes of the modes in the
frequency band of excitation are, on average, typical enough of all the modes of the system in terms of the
distribution of energy throughout the system. If this condition is satisfied then the system can be modelled
using an ‘‘quasi-SEA’’ approach, irrespective of the level of damping or of the strength of coupling.
However, the resulting model need not be of a proper SEA form, and in particular the indirect coupling loss
factors may not be negligible.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Energy-based modelling approaches are often used to describe the higher frequency vibrational
behaviour of complex systems in some average or approximate way. The system is divided into
subsystems and the response is described in terms of the total time average subsystem energies E
and input powers Pin. While these can in principle be discrete frequency responses, they are
usually frequency averaged, typically over third octave bands, the model then relating the time
and frequency average subsystem energies and the input powers.
The most important of these methods is statistical energy analysis (SEA) [1]. In an SEA model

the coupling power between two subsystems is assumed to be proportional to the difference in
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their modal energies, the constants of proportionality being related to the coupling loss factors.
SEA involves a number of assumptions and approximations, however, whose validity and
accuracy are usually unknown.
There are two main purposes to this paper. The first is to examine under what general

conditions the coupling powers are indeed proportional to the modal energy differences and hence
under what general conditions one might apply an SEA model with confidence. The second is to
provide a basis from which the parameters of an SEA model (e.g., the coupling loss factors) can be
estimated.
The analysis involves the modes of the system as a whole. These are first used to form an energy

distribution (ED) model. The conditions under which an SEA model can then be found are next
considered. A distinction is made between a ‘‘quasi-SEA’’ model and a ‘‘proper SEA’’ model. A
‘‘quasi-SEA’’ model is one for which the SEA parameters satisfy two necessary conditions, i.e.,
conservation of energy and consistency. A ‘‘proper SEA’’ model is one where, furthermore, all the
indirect coupling loss factors are zero, so that the assumption of coupling power proportionality is
valid. It is seen that, given some mild conditions (primarily that there are enough modes within the
frequency band and that the mode shapes of these modes are, on average, typical of all the
modes), an SEA-like model will exist, but the indirect coupling loss factors may be non-zero and
hence it will not be a proper SEA model. The coupling loss factors can, however, be estimated in
terms of the modes of the system.
A number of previous studies have been concerned with developing ED models from system

modes. These include the work of Guyader et al. [2], who explicitly considered systems of coupled
rectangular plates. Plate systems of arbitrary shape were considered in Refs. [3,4], which were
concerned with numerical studies of SEA in the strong coupling region. A more general approach
is described in Ref. [5].
The concept of indirect coupling loss factors has been introduced elsewhere [3, 6–9]. Numerical

examples were considered in Refs. [3,8,9], while Refs. [6,7] contain general discussions. Some of
the general conclusions of Refs. [6,7] were that SEA models can be formed if ‘‘subsystem energy’’
is defined appropriately, but there may be non-zero indirect coupling loss factors. The arguments
were developed using system Green functions, which of course can be written in terms of system
modes. Indeed, there are further similarities between the conclusions of Ref. [7] and those
described here, except that here energy is described uniquely and a condition involving the system
modal properties found for SEA to hold. Expressions are developed for the indirect coupling loss
factors in terms of these modal properties.
In the next section ED and SEA models and the properties of SEA parameters are discussed.

Following this, the means by which ED models can be formed from system modes is outlined. The
existence of an SEA model for the system is discussed in Section 4 and numerical examples
presented in Section 5. First, however, some aspects of terminology are discussed.

1.1. Terminology

In this paper the term system mode is used to describe a mode of the assembled system, while a
subsystem mode is one of a subsystem when uncoupled from the remainder of the structure.
Uncoupling can be achieved in any manner such as freeing or fixing the interfaces between the
subsystem and the rest of the structure.
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A global mode is a system mode which is global in the sense that the kinetic energy of the mode
is spread out globally through the system. A local mode, however, is a system mode which is
localized within a region of the system, so that the kinetic energy tends to be contained within one
(or maybe a few) subsystems.
The terms weak coupling and strong coupling are used in an SEA sense, although there is no

universal, commonly accepted definition of what this means as yet. From a wave perspective the
‘‘g - parameter’’ [8,10,11] has been proposed, while the Smith criterion of weak coupling is that the
coupling loss factors are much smaller than the damping loss factors. However, studies indicate
that in the strong coupling regime the coupling loss factors become proportional to the damping
loss factors. Thus, the Smith criterion should strictly involve the classical, asymptotic coupling
loss factor for large damping.
In contrast to the SEA strength of coupling, two subsystems can be described as being strongly

(or weakly) connected if energy can (or cannot) flow freely across the interface between them.
Typically, the interface between strongly connected subsystems has a large transmission
coefficient or there is a small impedance mismatch across it. Generally, weak and strong
connection are associated with there being predominantly local or global modes, respectively. A
clear distinction is thus made between the SEA strength of coupling and the strength of
connection.

2. Energy distribution and statistical energy analysis models

In this section, some general comments are made concerning ED and SEA models and the
relationships between them.
The system is divided into subsystems which are excited by random, stationary, distributed

forces. It is assumed that the system is linear and that the excitations applied to the different
subsystems are uncorrelated. The response is described by the time-average input powers Pin and
the subsystem energies E averaged over some frequency band O:

2.1. Energy distribution models and energy influence coefficients

In an ED model the energies and input powers are related by

E ¼ APin; ð1Þ

where A is a matrix of energy influence coefficients in the relevant frequency band. The element
Ars gives the (time and frequency average) energy in subsystem r per unit (time and frequency
average) power input to subsystem s. A is not symmetric, although symmetry exists regarding the
modal energies in some circumstances.
In the next section expressions for the energy influence coefficients are derived in terms of the

modes of the system. These coefficients can also be measured (e.g., using the power injection
method).
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2.2. Statistical energy analysis models

In SEA a power balance equation is written for each subsystem, so that, for subsystem r,

Pin;r ¼ Pdiss;r þ Pcoup;r: ð2Þ

Here Pdiss;r ¼ oZrEr is the dissipated power
1 in subsystem r, o being the band centre frequency

and Zr the loss factor of subsystem r, and Pcoup;r ¼
P

s Prs is the net coupling power for subsystem
r, with Prs being the coupling power from subsystem r to subsystem s.
Central to SEA is the assumption that the coupling power between two subsystems is

proportional to the difference in their energies per (subsystem) mode. This is the so-called
coupling power proportionality (CPP) assumption. In terms of the modal powers E/n (i.e.,
energies per mode of vibration per unit frequency)

Prs ¼ onrZrs

Er

nr

�
Es

ns

� �
; ð3Þ

where Zrs is the coupling loss factor between subsystems r and s and nr is the asymptotic modal
density of subsystem r. This can alternatively be written as

Prs ¼ oZrsEr � oZsrEs ð4Þ

so that, if CPP holds, the coupling loss factors must be related by the consistency relation

nrZrs ¼ nsZsr: ð5Þ

Assembling these SEA equations gives

Pin ¼ LE; ð6Þ

where L is a matrix of damping and coupling loss factors given by

L ¼ o diag Zj

� �
þ o

Z12 þ Z13 þ? �Z21 �Z31 ?

�Z12 Z21 þ Z23 þ? �Z32 ?

�Z13 �Z23 Z31 þ Z32 þ? ?

^ ^ ^ &

2
6664

3
7775; ð7Þ

where diag( � ) is a diagonal matrix. The columns of the matrix of coupling loss factors sum to
zero.
Strictly, CPP and the SEA equations are assumed to hold in an ensemble average sense, i.e.

when powers and energies are averaged over an ensemble of similar, but slightly different,
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factors. In Section 3, where the response is written in terms of the system modes, a viscous damping model is assumed

for two reasons. Firstly, the dissipated power is then proportional to the kinetic energy, which is the quantity most

easily measured. Secondly, the relation here is approximate and is only exact for the resonant response, when the

frequency average kinetic and potential energies are equal. For light damping, one can move from one model to another

by substituting Z ¼ 2z where z is the viscous damping factor. In practice, negligible errors are introduced for the types of
applications envisaged — if these errors are not negligible, the analyst will be in some difficulties in applying SEA

anyway.
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systems. When applied to an individual system, they are assumed to be a good approximation
only when averaged over a suitably wide frequency range.

2.2.1. ‘‘Quasi-SEA’’ and ‘‘proper SEA’’ models and matrices
An ED model requires the assumptions of linearity and uncorrelated excitations to be valid,

whereas SEA involves a number of further assumptions and approximations, some of them quite
sweeping. Only if these are valid does the CPP relation of Eq. (3) hold, and the coupling power
between two coupled subsystems then depends only on their modal energies and the coupling loss
factors. Indirect coupling loss factors are zero. The system can then be described by a ‘‘proper
SEA’’ model, which has great advantages to the analyst, since it is easy to relate the parameters of
the SEA model to physical damping and coupling components and to predict the effects of
modifications.
The parameters of an SEA model satisfy two necessary conditions if the behaviour of the

system is to be described by SEA. First, the sum of the rth column of L must equal oZr to satisfy
conservation of energy. Secondly, the off-diagonal terms must satisfy the consistency relation (5).
There are also a number of desirable conditions that are only satisfied if all the assumptions of

SEA are valid (i.e., those leading to the CPP equation (3)). First, and most important, the
coupling loss factor between subsystems which are not physically coupled should be zero: there
must be no non-zero ‘‘indirect coupling loss factors’’. The further conditions concern the coupling
loss factors. All the coupling loss factors should be positive. They should be independent of the
damping loss factors, at least in the classical approach to SEA. Finally, the coupling loss factor Zrs

should depend only on ‘local’ properties of the junction between subsystems r and s and those of
the subsystems connected to that junction, and not on the properties of any other, distant
subsystems. The coupling loss factors for two subsystems in isolation are therefore the same when
they form part of a larger structure, so that the analysis reduces to many, small analyses. In
contrast, the energy influence coefficients in an ED model depend implicitly on the properties of
the whole structure, making their explicit calculation unrealistic for large structures. However, no
approximations are involved.
If the two necessary conditions are satisfied and the indirect coupling loss factors are all zero, L

is said here to be a ‘‘proper-SEA’’ matrix, and SEA in its classical form can be used to model the
system. If only the necessary conditions are satisfied, L is said to be a ‘‘quasi-SEA’’ matrix: an
SEA-like analysis can, in principle, be adopted since the necessary conditions are satisfied, but
indirect coupling loss factors would be involved.
It is worth emphasizing here that the existence of a non-zero indirect coupling loss factor Zri

does not imply that energy flows between subsystems r and i (which are not physically coupled).
Instead, it means that the coupling power Prs between two subsystems r and s which are physically
coupled depends also on the energy of the third subsystem i. Hence, the coupling power Prs is not
given by the coupling power proportionality relation of Eq. (3). The existence of indirect coupling
loss factors thus indicates that some of the assumptions of SEA break down: the system may still
be modelled using an SEA-like approach, but indirect coupling loss factors are required to
accurately model the system’s response.
(Finally, it should be noted that even in a proper-SEA model, the coupling loss factors might

not have the ideal properties described above, for example they might depend on the damping loss
factor.)
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2.3. SEA matrices from energy distribution models

If an ED model is formed, then Eq. (1) can be inverted to give

Pin ¼ XE; X ¼ A�1: ð8Þ

Ideally, X is a proper SEA matrix and its elements satisfy both the necessary and the desirable
conditions described above. However, this need not be the case for two reasons. Firstly, X
describes the response of a single system over a specific frequency band and thus normally differs
from the ensemble average (e.g., finite number of modes, specific details of those modes, etc.).
Secondly, the SEA assumptions and approximations may be invalid or inaccurate (i.e., CPP does
not hold). The result is that the elements of X may not satisfy all the necessary or desirable
conditions of a proper-SEA or an SEA-like model even when ensemble averaged. For example, X
may not satisfy the consistency relations, in which case X is not ‘‘SEA-like’’.
In this paper, expressions for the ED matrix A are found from the modal properties of the

system. This requires only the assumptions of linearity and uncorrelated excitations, although
various other simplifying assumptions are made for convenience. The conditions under which an
SEA model can be formed are then examined. It is seen that, under some mild conditions
(primarily that there are enough, ‘typical’ modes in the band), the matrix X is an SEA-like matrix,
but it need not be a proper-SEA matrix: it satisfies all the necessary conditions of an SEA matrix
but need not satisfy the desirable conditions.

3. Energy distribution models from system modes

In this section, expressions for the energy influence coefficients are derived in terms of the
modes of the system. Proportional, viscous damping is assumed, although the modes may have
different bandwidths.

3.1. Discrete frequency response

A time harmonic point force acts at a point x ¼ x1 so that the applied excitation is f x; tð Þ ¼
Fexp iotð Þd x � x1ð Þ: Here x may be a vector for two or three-dimensional structures. The
amplitude of the response at point x2 is given in terms of the system modes by

W o;x1; x2ð Þ ¼
X

j

aj oð Þfj x1ð Þfj x2ð ÞF ; ð9Þ

where fj xð Þ is the mode shape of the jth system mode and where

aj oð Þ ¼
1

o2
j � o2 þ iDjo

ð10Þ

is the modal receptance of the jth mode, oj being the jth natural frequency. Here, viscous damping
has been assumed, with

Dj ¼ 2zjoj ¼ Zjoj ð11Þ
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being the half-power modal bandwidth and zj the damping factor. Proportional damping is
assumed, although z may vary from mode to mode, and thus in effect be frequency dependent.
Alternatively structural damping with a loss factor Z may be assumed, although some of the
following relations are then very good approximations rather than being exact. The system modes
are assumed to be mass normalized so thatZ

r xð Þfj xð Þfk xð Þdx ¼ djk; ð12Þ

where r xð Þ is the mass density.

3.1.1. Kinetic energy density and input power

The time-average kinetic energy density at x2 is

DT o;x1;x2ð Þ ¼ 1
2
Re 1

2
r x2ð Þo2WW �� �

¼
X

j

X
k

1
4
o2bjk oð Þ

� �
fj x1ð Þfk x1ð Þ F2

�� ��� �
r x2ð Þfj x2ð Þfk x2ð Þ
� �

; ð13Þ

where

bjk oð Þ ¼ Re aj oð Þa�k oð Þ
� �

ð14Þ

and where * denotes the complex conjugate. In Eq. (13) the right-hand side has been written as the
product of three terms which depend, respectively, on, frequency, the excitation and the response
location.
The time average input power is

Pin ¼ 1
2
Re ioW o; x1; x1ð ÞF�� �

¼
X

j

1
2
o2Djbjj oð Þf2j x1ð Þ F2

�� ��; ð15Þ

where

bjj ¼
1

o2
j � o2

� �2
þ Djo
� �2� �: ð16Þ

3.1.2. Conservation of energy

The total kinetic energy can be found by integrating the kinetic energy density (Eq. (13)) over
the whole system. From the orthogonality relations (12), it follows that, for each mode j,

Pin;j oð Þ ¼ 2DjTj; ð17Þ

where Tj is the kinetic energy in mode j. This is of course merely a statement of conservation of
energy, mode by mode. Subsequently, the total energy will be approximated by twice the kinetic
energy, and the terms Dj; 2zjoj and Zjoj will be used interchangeably. (If a structural damping
model is assumed Eq. (17) becomes Pin;j oð Þ ¼ 2DjVj; where Vj is the potential energy of mode j. Of
course, for broadband excitation, the kinetic and potential energies of modes in the excitation
band are equal.)
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3.2. Energy influence coefficients

In this section, expressions for the energy influence coefficients are found in terms of the modal
properties of the system. It is assumed that the excitations applied to different subsystems are
uncorrelated, so that the excitations can be considered one at a time.
Spatially distributed ‘‘rain-on-the-roof’’ excitation is applied to subsystem s and acts over a

frequency band O: The power input to subsystem s and the energy in subsystem r (twice the kinetic
energy if averaged over a sufficiently broad frequency band, to a very good approximation) are
found by integrating Eq. (15) and (13) over frequency, over the excited subsystem s and over the
responding subsystem r.

3.2.1. ‘‘Rain-on-the-roof’’
‘‘Rain’’ is here defined to be random excitation whose spatial distribution is delta-correlated

and whose amplitude is proportional to the local mass density r xð Þ: Thus S0
f x;oð Þ ¼ Sf oð Þr xð Þ

while its spatial cross-spectral density is zero. Such excitation applies equal modal forces to all the
subsystem modes and injects energy into the direct wavefield equally at all points of the excited
subsystem. Under these circumstances, the contribution to the mean square excitation f 2 in a
frequency band do is

df 2 ¼ 1
2

F2
�� �� ¼ Sf oð Þr x1ð Þdo; ð18Þ

where the spectral density Sf oð Þ is potentially frequency dependent, but is henceforth assumed to
be constant for convenience. The time and frequency average kinetic energy of subsystem r is
given by

T rð Þ ¼
1

O

Z
oAO;x1As;x2Ar

DT o; x1;x2ð Þ do dx1 dx2: ð19Þ

For rain excitation as defined above this, and the power input to subsystem s, become

T rð Þ ¼ 2Sf

P
j

P
k Gjkc

sð Þ
jk c

rð Þ
jk ;

P
sð Þ

in ¼ 2Sf

P
j 2DjGjjc

sð Þ
jj ;

ð20Þ

where

Gjk ¼
1

O

R
oAO

1
4
o2bjk oð Þ do;

c rð Þ
jk ¼

R
xAr

r xð Þfj xð Þfk xð Þ dx:
ð21Þ

The input power is given by a sum of powers input to each mode, while the kinetic energy is the
sum of cross-modal terms involving modes taken two at a time. The energy influence coefficient is
thus given by

Ars ¼
E rð Þ

P
sð Þ

in

¼
2T rð Þ

P
sð Þ

in

¼

P
j

P
k Gjkc

sð Þ
jk c

rð Þ
jkP

j DjGjjc
sð Þ

jj

: ð22Þ
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3.3. Discussion

The expressions above involve two types of terms, whose behaviours are described in this
subsection. The first is the cross-modal power mobility Gjk; which depends on the natural
frequencies and bandwidths of the modes. The second is the cross-mode participation factor c rð Þ

jk ;
which depends on the spatial correlation between the jth and kth mode shapes in the rth
subsystem. Large contributions to the input power come from modes j for which the participation
factor c sð Þ

jj is large, that is, from those modes which respond well (i.e., for which the modal
displacement is large) in the excited subsystem. Mode pairs for which both c sð Þ

jk and c rð Þ
jk are large

tend to give large contributions to the kinetic energy in subsystem r. These are mode pairs that are
both well-excited and which respond well. The input power depends on how many modes are
excited, while the kinetic energy depends also on how well these modes overlap.

3.3.1. Frequency integrals Gjk

The cross-modal term Gjk is a frequency integral whose magnitude depends primarily on the
natural frequencies of the two modes and how close are these natural frequencies. Cross-modal
terms for which Gjk is large may contribute strongly to the total response. Generally, Gjk is small
unless both modes j and k are resonant, i.e. unless their natural frequencies lie in
O ðojAO;okAOÞ: The term is particularly large if the modes overlap, i.e., they lie within each
others half-power bandwidths such that oj � ok

�� ��r Dj þ Dk

� �
=2: The self-term Gjj is always large

if mode j is resonant.
Analytic expression for the integrals exist (e.g. Ref. [5]), but these will not be repeated here. The

largest terms arise from resonant mode-pairs (especially overlapping pairs). For these, the limits
of the integration can be extended to 0;Nð Þ to a good approximation.

3.3.2. Small damping and constant damping approximations for Gjk

If the damping is small, then for resonant modes the frequency integrals can be approximated
by

Gjj ¼
1

O
p
8Dj

Gjk ¼
1

O
p oj þ ok

� �2 Dj þ Dk

� �
16 o2

j � o2
k

� �2
þ Djoj þ Dkok

� �2� �: ð23Þ

These expressions are exact if the limits of integration are 0;Nð Þ; whatever the level of damping.
Finally, if in addition the bandwidths of modes j and k are equal then

Gjk ¼
1

O
p
8D

1

1þ oj � ok

� �
=D

� �2 ¼ Gjj
1

1þ oj � ok

� �
=D

� �2;
Gjj ¼

1

O
p
8D

ð24Þ
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and where all the Gjj for resonant modes are equal. This can be written as

Gjk ¼ Gjjmjk;

mjk ¼
1

1þ S2jk

� � ¼
M2

jk

1þ M2
jk

� �;
Sjk ¼

oj � ok

�� ��
D

; Mjk ¼
1

Sjk

¼
D

oj � ok

�� ��; ð25Þ

where Mjk is the modal overlap of the two modes (i.e., the ratio of the bandwidth to the modal
spacing) and Sjk is the modal separation of the modes. The term mjk acts as a filter that determines
which mode pairs contribute significantly to the response: mjk is close to unity if the modes
overlap, but is small if they do not overlap. It can thus be approximated as

mj;k ¼
1; oj � ok

�� ��oD;

0; oj � ok

�� ��4D:

(
ð26Þ

3.3.3. Participation factors c rð Þ
jk

The cross-mode participation factor c rð Þ
jk indicates the correlation of the (j–k)th mode pair

within subsystem r. The self-term c rð Þ
jj gives the proportion of the modal kinetic energy stored in

subsystem r and indicates the degree to which the jth mode is localized within that subsystem.
Global modes of the system are those for which c rð Þ

jj is substantial for all (or at least many) of the
subsystems, while local modes are those for which c rð Þ

jj is non-negligible in only one (or a few) of
the subsystems.
Every system mode is orthogonal over the whole system, and therefore if there are Ns

subsystems XNs

s¼1

c sð Þ
jk ¼ djk: ð27Þ

The self-terms c rð Þ
jj are necessarily positive, while the cross-terms may be positive or negative.

3.3.4. Modal density
Suppose that the damping is light and the bandwidth is large enough so that the response is

dominated by resonant modes. The power input to subsystem s is, from Eqs. (20) and (23),

P
sð Þ

in ¼ Sf

p
2O

X
j

c sð Þ
jj : ð28Þ

Now suppose that subsystem s is isolated from the rest of the system. It is known that the input
power is proportional to the modal density when averaged over a wide enough bandwidth (e.g.,
Ref. [12]). In the notation of this paper

E P
sð Þ

in

h i
¼ Sf

p
2

ns oð Þ; ð29Þ

where E[.] represents the expectation, or the asymptotic average, over many modes. This equation
also follows from Eq. (28) by noting that of the system were to comprise just a single subsystem,
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then c sð Þ
jj ¼ 1—although the mode shapes will of course be the subsystems modes and are different

from those when s forms part of the larger system—and the sum becomes the expected number of
modes in the band.
In Ref. [12] it is also noted that Eq. (29) holds irrespective of the boundary conditions, and

hence holds when s forms part of the larger system. By taking the expectation of Eq. (28), it
follows that, asymptotically,

E c sð Þ
jj

h i
¼ ns ¼

ns

ntot

; ð30Þ

where ntot is the total modal density of the system (the sum of the modal densities of the individual
subsystems, e.g. Ref. [13], Section 6] and where ns is the fractional modal density of subsystem s,
i.e., the ratio of the modal density of subsystem s to the total modal density of the system.

3.4. Some properties of the energy influence coefficients

Suppose, for convenience, that the damping is the same for all modes. The energy influence
coefficients then satisfy

ArsZ0;
X

r

Ars ¼
1

D
: ð31Þ

The latter result, that the column sums of A equal 1/D, is a consequence of conservation of energy.
If the modes have different damping levels then similar relations can be developed for the
dissipated powers rather than the subsystem energies directly.
If the damping is light, so that the contributions of the off-resonant out-of-band modes can be

neglected, then

Ars ¼
1

D

P
j

P
k mjkc

rð Þ
jk c

sð Þ
jkP

j c
sð Þ

jj

; ð32Þ

where the sums now run over all modes with natural frequencies in the band O:

4. Statistical energy analysis and energy flow models

In the previous section expressions for the matrix A of energy influence coefficients were
developed. The system was assumed to be linear and the excitations uncorrelated. ‘‘Rain’’
excitation with a spectral density independent of frequency was then assumed to act on each
subsystem. Proportional damping was assumed, and further expressions were developed for the
simple and convenient case where all modes in the excitation band have light and equal damping.
This section concerns the inverse matrix X ¼ A�1 and under what conditions it is a ‘‘quasi-

SEA’’ matrix L, as discussed in Sections 2.2.1 and 2.3. This indicates under what conditions an
SEA-like model can be used to describe the behaviour of the system. Reasons why the response of
a single system might differ from this SEA average are also discussed. Whether or not L is a
proper-SEA matrix is considered in more detail in Ref. [14].
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4.1. The existence of quasi-SEA matrices

For L to be an SEA-like matrix the rth column must sum to oZr and the off-diagonal elements
must satisfy the consistency relation. A can be written as

A ¼
1

oZ
I� að Þ; ð33Þ

where

ars ¼ drs �

P
j

P
k mjkc

rð Þ
jk c

sð Þ
jkP

j c
sð Þ

jj

: ð34Þ

(Damping is now expressed in terms of loss factor for consistency with conventional SEA
equations.) The columns of a sum to zero (Eq. (27)). The inverse matrix X=A

�1 can therefore be
written as

X ¼ oZIþ oC;

C ¼ Za I� að Þ�1¼ Z a þ a2þa3 þ?
� �

:
ð35Þ

Firstly, since the columns of a sum to zero then so do the columns of C, as can be shown by
premultiplying by the row vector �20c1 1 y

� �
: Secondly, a can be written as

a ¼ b diag 1=
X

j

c sð Þ
jj

 !
; brs ¼

X
j

c sð Þ
jj drs �

X
j

X
k

mjkc
rð Þ

jk c
sð Þ

jk ; ð36Þ

where b is a symmetric matrix. It follows that a2;a3;y and hence C in Eq. (35) are also products
of a symmetric matrix and the diagonal matrix in Eq. (36). If X is to be SEA-like, then Cmust be a
matrix of coupling loss factors (Eq. (7)) with the off-diagonal element Crs ¼ �Zsr: The elements of
C will only satisfy the SEA consistency relation (Eq. (5)), i.e.,

nrCsr ¼ nsCrs ð37Þ

if the ratio
P

j c
rð Þ

jj =nr is a constant for all subsystems, i.e., if the modes in the band are such that

c rð Þ
jj ¼ E c rð Þ

jj

h i
¼ nr; ð38Þ

where c rð Þ
jj is the average value of c rð Þ

jj for all modes in the frequency band. Thus the consistency

relation is satisfied for the band O if the average value c rð Þ
jj for all modes in the band approximates

the average E c rð Þ
jj

h i
of Eq. (30) sufficiently well: there must be enough modes in the band and their

mode shapes must be, on average, ‘typical enough’ of all the modes of the system, in terms of the

distribution of kinetic energy throughout the system. Furthermore, since c rð Þ
jj depends only on the

mode shapes of the modes in O, then the consistency relation holds irrespective of the level of
damping, and hence irrespective of the strength of coupling, whether it be strong or weak.
Thus X always satisfies conservation of energy, as one would expect, and also satisfies the

consistency relation if the condition in Eq. (38) holds. These are the necessary conditions of an
SEA-matrix and hence X is a ‘‘quasi-SEA’’ matrix if Eq. (38) holds. However, X does not
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necessarily satisfy all the desirable properties of SEA, so that it may not be a proper SEA matrix
(indeed, in general it will not be). In particular:

* coupling loss factors can be negative;
* there may be indirect coupling loss factors, since Crs need not be zero if subsystems r and s are
not physically coupled;

* the coupling loss factors Zrs and Zsr generally depend on the global properties of the system
rather than the local properties of the subsystems r and s (especially if the damping is light
enough);

* the coupling loss factors generally depend on the damping loss factor Z, especially if the
damping is light enough.

Thus coupling power proportionality holds, and the system can be modelled using a quasi-SEA
approach, but ‘‘indirect’’ coupling powers must be included. The above, however, gives a means
for calculating the indirect coupling loss factors for the system.
To summarize, if certain rather mild conditions are satisfied, and particularly Eq. (38), then a

quasi-SEA model of a system can be made, with the coupling loss factors being given in terms of
the system modes. However, indirect coupling loss factors must in general be included.

4.2. SEA and the response of a single system

The subsystem energies #E ¼ #A #Pin for a specific system under specific excitation over a specific
frequency band may differ from the expressions derived above, for which various approximations
and assumptions were made. Furthermore, the frequency band may not be large enough that the
response can be described by a quasi-SEA model. This is the cause of variability in SEA
predictions. The reasons behind this are briefly described here.
Firstly, the excitation may be frequency dependent, nor may it have the spatial dependence

assumed above for ‘‘rain’’. Various modes may be excited preferentially, for example. Different
modes may have different loss factors, so some may respond preferentially. Thirdly, the damping
may be large enough, or the bandwidth narrow enough, such that non-resonant modes contribute
substantially to the response. Finally, the damping may not be proportional, so that the response
should strictly be described in terms of complex modes. These are all minor causes of variability
and can, in principle, be accommodated.
A more fundamental cause of variability in the responses of individual systems arises from finite

frequency band excitation and the statistics of those modes which lie in the band. The subsystem
energies depend on c sð Þ

jk c
rð Þ

jk while the input power depends on c sð Þ
jj and hence the energy influence

coefficients depend on both. Strictly, an ensemble of systems which differ in detail should be
defined, with the ensemble average response being defined by A. For a specific realization #A ¼
A Iþ eð Þ; with E e½ 
 ¼ 0: The elements of e are likely to be strongly correlated and non-Gaussian,

especially if the bandwidth is small. If A�1 ¼ L is a quasi-SEA matrix then #A
�1

¼ X�1 ¼

Iþ eð Þ�1A�1 ¼ I� e þ e2:::
� �

L: Ensemble averaging gives E
�
#X
�
¼ Iþ E e2

� �
þ?

� �
L: Note that

this is biased, which raises some doubts over the accuracy of estimating the (ensemble average)
coupling loss factor by averaging estimates found from individual systems. Further issues
surrounding the variability of SEA estimates are the subject of further research.
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5. Numerical examples

In this section some numerical examples are presented to illustrate the foregoing text. The
system considered is shown in Fig. 1 and comprises four coupled rods undergoing axial vibrations.
The rods are uniform and identical except for their lengths and cross-sectional areas and the
lengths are chosen so that the ratio of the lengths of any two rods is irrational. The values used are
shown in Table 1, with the lengths of the rods given to four decimal places. The total modal
density of the system ntot = 1, so that the mode count is approximately equal to the frequency o:
The bandwidth oZ is thus numerically equal to the modal overlap. The system modes are found
using a component modal approach as described in Ref. [15].
Fig. 2 shows the modal energy participation factors c rð Þ

jj for the first 100 modes for all
subsystems (i.e., j ¼ 1;y; 100; r ¼ 1;y; 4). Also shown are the fractional modal densities nr:
While there is clear variation from mode to mode, most system modes tend to be somewhat
global, in that the response is significant in many subsystems. There is more variation for
subsystem 1, which has both the lowest modal density and the largest cross-sectional area and
hence the largest characteristic impedance.
Closer study shows that c rð Þ

jj are more-or-less uniformly distributed, while there is a small and

generally negative correlation between c rð Þ
jþ1; jþ1 and c

rð Þ
jj : Together these imply that the average c

rð Þ
jj

will converge at least fairly quickly towards the expected value.

Fig. 3 shows the frequency average c rð Þ
jj over a frequency band centred on the 50th natural

frequency as a function of the number of modes contained in the band. This illustrates how the
averages asymptote to the fractional modal densities as the number of modes increases. This
convergence also indicates, according to the criterion of Eq. (38), whether one is able to model the
system using a quasi-SEA approach — for this centre frequency, one might expect a quasi-SEA
approach matrices to exist for bandwidths including more than, say, 10 system modes.
The remaining results show direct and indirect coupling loss factors for a third octave band

centred on the 50th global natural frequency. This contains 13 system modes. Over this frequency
band the bandwidth D ¼ oZ of the modes is held constant, so that the modal overlap does not
depend on frequency. The calculated results are approximate, in that non-resonant (i.e. out-of-
band) modes are ignored, while the approximate expressions of Eq. (24) are used for the terms Gjk

rather than the exact results [5]. Errors introduced by this approximation are only significant for
the higher values of oZ, where the modal overlap becomes large. For a one-dimensional system
such as this, large modal overlap implies a rapid spatial decay of response across the system, with
the subsystems no longer being reverberant. Nevertheless, a quasi-SEA approach can still be
adopted.
Figs. 4 and 5 show onrZsr as a function of oZ, some of the indirect coupling loss factors being

negative. In all cases onrZsr and onsZsr are equal, to a very good approximation, indicating that
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Fig. 1. System comprising four coupled rods.
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the SEA consistency relation of Eq. (5) holds, even for the indirect coupling loss factors. This is
expected from Fig. 3 and Eq. (38). For small damping the coupling loss factors are proportional
to Z, because the sums in the numerator of Eq. (32) are dominated by the ‘self’ terms c rð Þ

jj c
sð Þ

jj ; the
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Table 1

Rod properties (arbitrary units)

Rod Area Length n

1 1 0.5171 0.1646

2 0.4 0.8885 0.2828

3 0.9 0.7072 0.2251

4 0.6 1.0288 0.3275
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Fig. 2. Participation factors c rð Þ
jj for the rods, first 100 modes, and (- - -) fractional modal densities.
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cross terms being negligible since the modal bandwidth is small and hence so, too, is Gjk. Thus A is
proportional to 1=oZ and hence X ¼ A�1 and the coupling loss factor matrix C are proportional
to Z. Similar behaviour has been observed before with analyses proceeding along wave [10,11] or
FE/modal lines [3,4]. As damping increases the coupling loss factors reach a peak and tend
towards a value close to the asymptotic wave expression [1] (differences arise because the
contributions from out-of-band modes become substantial as modal overlap becomes large). This
indicates the transition from strong to weak coupling, as characterized by the parameter g of Ref.
[10], as oZ increases. The dependence of the coupling loss factors on modal overlap is considered
further in Ref. [14].
The indirect coupling loss factors are smaller than the direct coupling loss factors, but are by no

means negligible for low damping (and hence strong coupling). For moderate and high damping
the ‘more distant’ indirect coupling loss factors Z14 and Z41 are smaller than and asymptote to zero
substantially more rapidly than the ‘neighbouring’ indirect coupling loss factors Z13; Z24; etc. This
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Fig. 3. Ratio of frequency average participation factors c rð Þ
jj to fractional modal density nr for a frequency band centred

on the 50th natural frequency as a function of the number of modes in the band and (- - -) fractional modal densities.
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Fig. 4. Direct and indirect coupling loss factors: onrZrs as a function of oZ:

Fig. 5. Magnitudes of direct and indirect coupling loss factors: onrZrs as a function of oZ:
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behaviour might be expected since the correlation between mode shapes in two subsystems would
be expected to decrease as the separation of the subsystems increases.

6. Concluding remarks

In this paper, expressions were derived for the energy influence coefficients in terms of the
modes of the system. From this it was seen that an SEA-like model can be formed if the condition
given in Eq. (38) is satisfied to acceptable accuracy. In a sense this accords with the practical
observation that SEA requires there to be a sufficient mode count in the analysis band. However,
if Eq. (38) is satisfied, then it holds irrespective of the level of damping (and hence the strength of
coupling) in the system: the system can be modelled by SEA irrespective of the strength of
coupling. However, the resulting model need not be of proper-SEA form: the indirect coupling
loss factors may not be negligible, especially if the damping is small enough such that the coupling
is strong.
In the foregoing it was assumed that the system is linear and that the excitations applied to the

different subsystems are uncorrelated. These assumptions are necessary.
Various other assumptions were made, primarily for convenience—these can be relaxed if

required, but the resulting expressions become more complicated. The damping was assumed to
be light, proportional and viscous. In many of the equations the response was assumed to be
dominated by resonant modes. For example, the total energy was assumed to equal twice the
kinetic energy. Simple expressions were developed for resonant contributions by extending the
frequency limits of integration to (0, N) and assuming all modes have the same bandwidth.
Finally ‘‘rain-on-the-roof’’ excitation was assumed to act, and was defined to be frequency
independent, spatially delta-correlated and proportional to the local mass density.
The modal formulation provides a method by which direct and indirect coupling loss factors

can be calculated and by which the dependence of these parameters on the modal overlap can be
investigated [14]. Some numerical examples were given.
The system modes can be used to determine the direct and indirect coupling loss factors. This

requires knowledge of those modes, however, which will often make the approach intractable in a
practical application. However, at least the existence of an SEA model can be inferred. It also begs
the question as to what extent ‘‘fairly local’’ parameters (e.g. direct and next-neighbour indirect
coupling loss factors) depend on ‘‘distant’’ system properties—this is currently under
investigation.
Finally, the analysis here is deterministic: no ensemble averaging is involved. One might hope,

however, that the statistics of the modes of similar systems might be similar, even if the details of
those modes differ.
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